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1 Introduction

The geometric study of thermodynamics began with Gibbs’s reformulation of
the theory in terms of equilibrium states rather than processes [1]. The sur-
face of the set of equilibrium states was Gibbs’s primary object of study and
foreshadowed much of the modern differential geometric theory manifolds.

Gibbs surfaces is where the geometric theory stood when I became a grad-
uate student. The story that I relate in these lectures begins here. This is
when Frank Weinhold published a series of five papers [2] based on the fol-
lowing observation: If we interpret differentials as vector quantities, and use
the second derivative matrix of the internal energy as a metric, then many
of the thermodynamic identities can be interpreted as well known geomet-
ric equations, e.g., the Pythagorean theorem, the law of sines, etc. At the
time, I was working on another aspect of the geometrical structure related to
thermodynamic potentials (briefly mentioned in the last lecture) and reacted
to these papers with great skepticism. The geometry of Gibbs seemed to
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Figure 1: Plaster model of the equilibrium states of water constructed by
James Clerk Maxwell and sent as a present to Josiah Willard Gibbs.
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point to an affine rather than a metric structure for the manifold of equi-
librium states; there are always many choices for a metric and finding that
some identities can be naturally expressed in terms of one is hardly proof
of its physical significance. If such a metric really means anything, then fi-
nite lengths rather than infinitesimal ones should have meaning. Fortunately,
Steve Berry, in whose group Bjarne Andresen and I were both working at the
time, did not share my skepticism. He asked me to calculate what such finite
distance would look like if we take the metric structure seriously. He then
showed them to a shock tube experimentalist (Paul Gait) who recognized one
of the formulas (the length of an adiabat) as the change in the flow velocity
of a gas when a shock wave passes [3]. This clue led to the more general
interpretation of such distances and their intimate relation to dissipation in
what was to be called the Horse-Carrot theorems [4, 5, 6], the main topic of
these lectures.

2 The Horse-Carrot Theorem

Dissipation can be measured by entropy production or by loss of available
work. Weinhold worked with the second derivative matrix of the internal
energy. As seen below, this metric yields bounds on loss of available work.
One early result [7] is that the metrics defined by the second derivative of the
internal energy and by the second derivative of the entropy are conformally
equivalent, i.e., the energy metric is just the temperature times the entropy
metric (not as matrices but as quadratic forms acting on infinitesimal dis-
placements). Below we work almost exclusively with the entropy metric but
note that analogous statements can be made for the energy metric.

Let us begin by focusing on a thermodynamic system undergoing a process
that we can represent as a sequence of states in its state space of thermody-
namic variables. Thus we take what most textbooks would call a quasistatic
process of a simple system and ask what the minimum dissipation might
mean for such a process. If we are given infinite time, we can make the qua-
sistatic process reversible. More precisely, given a sufficiently large time, we
can make the entropy production as small as desired.

To see this, consider bringing the system along the quasistatic locus by
successively placing it in contact with a very large copy of itself in a state
corresponding to a point a little further along the quasistatic locus. This
causes the system to equilibrate toward this next state and we then proceed
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by a sequence of (possibly incomplete) equilibrations. As we make these
equilibrations smaller and smaller, the process produces less and less entropy
while taking longer and longer. To illustrate this point, we pause for a very
simple yet concrete example which makes this basic idea explicit.

EXAMPLE : We consider the example of heating a cup of coffee [8]. We do
it in the manner suggested above by placing it in contact with a sequence of
slightly hotter heat baths. Assuming that our coffee cup has a constant heat
capacity, C, and that we wish to heat the cup from T0 to Tf , we ask for the
sequence of K temperatures T1, T2, ..., TK = Tf such that the K complete
equilibrations of the cup starting from Tj−1 and ending at Tj, j = 1, ...K
minimize the total entropy production.

The entropy production for step j is

(dSu)j = dScup + dSroom = C

(
1

T
− 1

Tj

)
dT. (1)

(∆Su)j =
∫ Tj

Tj−1

dSu =
∫ Tj

Tj−1

C

(
1

T
− 1

Tj

)
dT. (2)
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If the heat capacity C is constant, the total entropy production ∆Su is

∆Su =
K∑

j=1

∆(Su)j = C

ln
Tf

T0

−K +
K∑

j=1

Tj−1

Tj

 (3)

which is minimized by the sequence of temperatures

Tj = T0

(
TK

T0

) j
K

(4)

with the minimum entropy production given by

(∆Su)opt =
C

2K

(
ln

Tf

T0

)2

(5)

This calculation can be made completely generally and gives the discrete
version of

Theorem 1 (Discrete Horse-Carrot Inequality [4]) In a process of K
near equilibrations of a simple system to states along a given quasistatic locus,
K � 1, the entropy production is bounded below by

∆Su ≥
L2

2K
. (6)

Here L is the thermodynamic length of the path

L =
∫ √√√√∑ ∂S2

∂Xi∂Xj

dXidXj (7)

and the Xi are a complete set of extensive variables of the thermodynamic
system.

A closely related, continuous time version is given by

Theorem 2 (Horse-Carrot Inequality [5]) In a sufficiently slow process
in which a system traverses a given quasistatic locus, the entropy production
is bounded below by

∆Su ≥ L2ε̄/τ, (8)

where L is the thermodynamic length of the quasistatic locus, τ is the duration
of the process and ε̄ is a mean relaxation time.

The first lecture will present the details and proofs of these two theorems
and discuss their meaning.
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Figure 2: A schematic distillation column with flows: feed F , distillate D
and bottoms B. The close up shows two adjacent trays including overflow
tubes for downward flow of liquid L and bubble caps for upward flow of vapor
V .

3 Staged Steady-State Processes

Applications of the Horse-Carrot theorem were not quick to materialize. In
fact, it was a 1997 comment by a graduate student (Eitan Geva, who has
since made important contributions to quantum thermodynamics in finite
time) that spurred me to pursue a serious search for applications. The result
was a version of the discrete Horse-Carrot Theorem [6] in which, surprisingly,
the “system” consisted of the flows (!) in the steady state process. The only
example that has been calculated in detail is fractional distillation, for which
the large K limit turned out to be rather a mild constraint. Already for
K = 15 the bound, and the prescribed optimum, performed surprisingly well
[9]. This was later explained by Jim Nulton’s theorem [10] showing that the
prescribed optimum is correct to a higher order than the truncations involved
would lead one to expect.

The second lecture will discuss the generalized Horse-Carrot Theorem for

6



steady-flow processes and the fact that the truncation gives higher order than
expected.

4 Fluctuation Theory

A natural question to ask was how this metric structure looks from a statis-
tical mechanical perspective. Rather early in the process of uncovering this
structure we were led to the following theorem:

Theorem 3 (Statistical Mechanical Length [11]) The length of a path
measured microscopically or macroscopically are equal.

The metric at this level is still the second derivative of the entropy
S =

∑
piln(pi). This metric, in the hands of Diosi and Ruppeiner, has

made a significant impact on the theory of fluctuations [12, 13]. It turns
out that for large fluctuations, corrections must be made to the Einsteinian
theory. This becomes important only near the critical point, where fluctua-
tions become large. The initial impetus was provided by George Ruppeiner’s
computational experiments in Ising lattices near the critical point. His frame-
work involves a nice physical picture of fluctuations inside fluctuations inside
fluctuations ... (see figure 3).

He was able to use a path-integral formalism in which 1/V plays the
role of time and the likelihood of a path is the length of a path as mea-
sured by thermodynamic distance. A very similar theory, more elegant but
less physically motivated, was advanced by Diosi and coworkers [12] which
analyzed the underlying stochastic processes in terms of a covariant partial
differential equation instead of path integrals. The interpretation supported
by these considerations is that the thermodynamic length of a process may
be thought of as the number of fluctuations needed to traverse the process.
This point was eloquently made by Wootters [14].

5 Pot Pourri

It is difficult to plan a series of lectures for an audience as yet unmet. (I have
this same difficulty at the beginning of each semester.) How much details
will the audience want/need? The last lecture will elaborate on and fill in
certain details from the previous three. If this appears superfluous, there is
plenty of additional topics:
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Figure 3: Hierarchy of subsystems AV1 ⊃ AV2 ⊃ ... ⊃ AV . Each subsystem
feels only the state of its immediate surrounding neighbor.

• Quantum mechanical version of thermodynamic length [15].

• Fisher information and the theory of large fluctuations [16].

• Generalized thermodynamic potentials and contact geometry [17].

How much of these topics will be covered, given the alloted time and the
curiosity of the audience, remains to be seen.
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