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PREFACE FOR THE STUDENT

1. Please don’t read the Preface for the Teacher.

2. T will ask of you only the ability to read English and to
think logically-—neo high school mathematics, and certainly no
advanced mathematics.

To prevent arguments: A number, no number, two cases, all
objects of a given totality, etec. are completely unambiguous
phrases. “Theorem 1,” “Theorem 2, . ... “Theorem 301" (and
the like in the case of axioms, definitions, chapters, and sections)
and also “1)"”, “2)” (used for distinguishing cases) are simply
labels for distinguishing the various theorems, axioms, defini-
tions, chapters, sections, and cases, and are more convenient for
purposes of reference than if T were to speak, say, of “Theorem
Light Blue,” “Theorem Dark Blue,” and so on. Up to “301,” as
a matter of fact, there would be difficulty whatever in introduc-
ing the so-called positive integers. The first difficulty—overcome
in Chapter I-—1lies in the totality of the positive integers

1,...

with the mysterious series of dots after the comma (in Chapter I,
they are called natural numbers), in defining the arithmetical
operations upon these numbers, and in the proofs of the pertinent
theorems.

I develop corresponding material in each of the chapters in
turn: in Chapter 1, for the natural numbers; in Chapter 2, for
the positive fractions and positive rational numbers; in Chapter
3, for the positive (rational and irrational) numbers; in Chap-
ter 4, for the real numbers (positive, negative, and zero) ; and
in Chapter 5, for the complex numbers; thus, I speak only of
such numbers as you have already dealt with in high school.

In this connection:

3. Please forget what you have learned in school; you haven’t
learned it.
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Please keep in mind everywhere the corresponding portions
of your school work; you haven't actually forgotten them.

4. The multiplication table is not to be found in this book,
not even the theorem

2 - 2e==4;

but I would recommend, as an exercise in connection with Chap-
ter 1, § 4, that you make the following definitions:

2=—1+1,
d==(((1+1) +1) +1)},

and then prove the theorem.

5, Forgive me for “theeing” and “thouing” you.* One rea-
son for my doing so is that this book is written partly in usum
delphinarum:t for, as is well known (cf. E. Landau Vorlesungen
iber Zahlentheorie, Vol. I, p. V), my daughters have been study-
ing (Chemistry) at the University for several semesters already
and think that they have learned the differential and integral
calculus in College; and yet they still don’t know why

T-Y=y- .

Berlin, December 28, 1929,
Edmund Landau

* In the original German, Professor Landau uses the familiar “du” [thou]
throughout this preface, [Trans.}

¥ For Delphin use. The Delphin classics were prepared by great French

scholars for the use of the Dauphin of Franee, son of King Louis X1V.
[Trans.}

PREFACE FOR THE TEACHER

This little book is a concession to those of my colleagues (w
fortunately in the majority) who do not share my point of vie
on the following question.

While a rigorous and complete exposition of elementary math
matics can not, of course, be expected in the high schools, tl
mathematical courses in colleges and universities should acquair
the student not only with the subject matter and results of math
matics, but also with its methods of proof. Even one who studi
mathematies mainly for its applications to physics and to oth
sciences, and who must therefore often discover auxiliary math
matical theorems for himself, can not continue to take ste
securely along the path he has chosen unless he has learned ho
to walk—that is, unless he is able to distinguish between true ar
false, between supposition and proof (or, as some say so nicel
between non-rigorous and rigorous proof}.

1 therefore think it right—as do some of my teachers and ¢
leagues, some authors whose writings I have found of help, a1
most of my students—that even in his first semester the stude
should learn what the basic facts are, accepted as axioms, fro
which mathematical analysis is developed, and how one can pr
ceed with this development. As is well known, these axioms ¢
be selected in various ways; so that I do not declare it to be i
correct, but only to be almost diametrically opposite to my poi
of view, if one postulates as axioms for real numbers many of t
usual rules of arithmetic and the main theorem of this bo
(Theorem 205, Dedekind’s Theorem). I do not, to be sure, pro
the consistency of the five Peano axioms”(because that can not
done), but each of them is obviously independent of the precedi:
ones. On the other hand, were we to adopt a large number of axion
as mentioned above, the question would immediately occur to t
student whether some of them could not be proved (a shrewd o
would add : or disproved) by means of the rest of them. Since ith
been known for many decades that all these additional axioms ¢
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Axioms

We assumne the following to be given:

A set (i.e. totality) of objects called natural numbers, possessing
the properties—called axioms—to be listed below.

Before formulating the axioms we make some remarks about
the symbols = and == which will be used.

Unless otherwise specified, small italie letters will stand for
natural numbers throughout this book.

If x is given and y is given, then

either z and y are the same number ; this may be written

=y

{= to be read “equals”};

or z and ¥ are not the same number ; this may be written

Ay
(<= to be read “is not egual to”).
Accordingly, the following are true on purely logical grounds:

1) X e=l
for every z.
2) H
Xz Y
then
=g
3 i
o=y, Y==2
then
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Thus a statement such as
@ ==b == ¢ == d,
which on the face of it means merely that
a==b, b=c¢, ¢=d,
contains the additional informatien that, say,
a==c d=d, b==d.
(Similarly in the later chapters.)
Now, we assume that the set of all natural numbers has the
following properties:
Axiom 1: 1 is a natural number.
That is, our set is not empty; it contains an object called 1
{read “one”).
Axiom 2: For each x there exisis exactly one natural number,
called the successor of x, which will be denoted by x'.
In the case of complicated natural numbers x, we will enclose

in parentheses the number whose successor is to be written down,

since otherwise ambiguities might arise. We will do the same.
throughout this book, in the case of x + w, Ty, & — ¥, — x, 2, ete.

Thus, if

T ==Y
then
2=y,
Axiom 3: We always have
2 1,

That is, there exists no number whose successor is 1.
Axiom 4: If

then
T ==y,

That is, for any given number there exists either no number or
exactly one number whose successor is the given nurnber.

Axiom 5 (Axiom of Induction): Let there be given a set T
of natural numbers, with the following properiies:

1} 1 belongs to M.

Iy If © belongs to 9 then so does x'.

Then M contains all the natural numbers,

Th. 1-3] § 2. ADDITION 3

§2

Addition
Theorem 1: Jf
T ==y
then
==y,
Proof: Otherwise, we would have
" ey’
and hence, by Axiom 4,
&L == 4.
Theorem 2: =z,

Proof: Let M be the set of all x for which this holds true.
I) By Axiom 1 and Axiom 3,
1" <4=1;
therefore 1 belongs to M.
IT) If z belongs to M, then
2,
and hence by Theorem 1,
(&) =+ &',
so that »” belongs to M.
By Axiom b, M therefore contains all the natural numbers, i.e.
we have for each z that
' .
Theorem 3: If
1,
then there exists one (hence, by Axiom 4, exaetly one) u such that
T ==,

Proof: Let M be the set consisting of the number 1 and of all
those x for which there exists such a u. (For any such z, we Lave
of necessity that

=1
by Axiom 3.)
I) 1 bhelongs to 0.
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11} If z belongs to MW, then, with u denoting the number x,
we have

so that z’ belongs to .
By Axiom 5, 9 therefore contains all the natural numbers;
thus for each
Z =1
there exists a u such that
R T
Theorem 4, and at the same time Definition 1: To every pair
of numbers x, y, we may assign in exactly one wey o naturel num-
ber, called x + v (+ to be read “plus”), such that
1}y 2 + 1=1x' for every z,
2 x4y = (x + ¥) for every x and every y.
x + y iz called the sum of z and y, or the number obtained by
addition of y to x.
Proof: A) First we will show that for each fixed z there is
at most one possibility of defining x + ¥ for all ¥ in such a way that

-+ 1=z
and
x4+ y = (x+ y) for every .
Let @, and b, be defined for all ¥ and be such that

t
ki

a, == ' b, = z',
a, = (a,), b, = {b) for every y.
Let M be the set of all ¥ for which
Qm == 0.
I a, = ' = b;
hence 1 bhelongs to M.
11y If y belongs to M, then

a, = by,

(@) = {b,),
Gy == A.u....._v_ == @ev. = Wui

so that ¥ belongs to M.
Hence M is the set of all natural numbers; i.e. for every y we
have

hence by Axiom 2,

therefore

Def. 1] § 2. ADDITION B

B) Now we will show that for each z it is actually possible to
define & + v for all ¥ in such a way that
-+ 1z==zx
and
x4+ =={x+y) for every .
Let 9 be the set of all x for which this is possible (in exactly
one way, by A)).
1) For
X = H.
the number
x b y=y
is as required, since
T+ le=l = H\,
2ty = (y) = (z +y).
Hence 1 belongs to M.
11} Let x belong to M, so that there exists an x + y for all ¥
Then the number
a Ay (xty)
is the required number for z’, sinee
41 = {g+1) = &
and
'ty = (e+y) = (+y)) = &+y).
Hence z' belongs to M.
Therefore M contains all =.
Theorem 3 {Asscciative Law of Addition}:

(x+y)+z=2z+(y+ 2z).

Proof: Fix x and v, and denocte by I the set of all z for which
the assertion of the theorem holds.

D+ +li=(zt+y) =z+y=0+{y+1);

thus 1 belongs to M.
11} Let 2z belong to M., Then
(@+y)+2z == x4 (y+2)
hence
@y +e = (mt+y+2) = @+{y+e) = s+{y+o) = z+{y+),
so that 2z’ belongs to M.
Therefore the assertion helds for all z.
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Theorem 6 (Commutative Law of Addition):
r+y=y+zx

Proof: Fix y, and let 9% be the set of all z for which the
assertion holds.

1) We have
¥+ 1=y,
and furthermore, by the construction in the vwoo»., of Theorem 4,
1+y=v,
so that
14 yeey+1

and 1 belongs to M.
II) If x belongs to M, then
r+y=y-+x
therefore
g+ y) =(y+2) =y+2a
By the construction in the proof of Theorem 4, we have
4 y=(x+y
hence
rry=y+,
so that z” belongs to 9.
The agsertion therefore holds for all z,

Theorem 7: Y=o+ Y.
Proof: Fix z, and let 3¢ be the set of all y for which the asser-
tion holds.
1) 12",
Clsex 1
1 belongs to M.
II) If y bhelongs to MM, then
¥+,
hence
¥ebs (2 4 3)",
U o Tl T
so that ¥ belongs to 9.
Therefore the assertion holds for all y.
Theorem 8: If

vz
then

- z -+ yk=x -+ 2

§ 2. Apprrion T

Proof: Consider a fixed ¥ and a fixed z such that

Y =7,
and let M be the set of all & for which
z-t+y=x-+ 2

D Y =2
T4+ys=1+z;

hence 1 belongs to M.
1I) If x belongs to M, then

z+ty=sz+2,
hence
( +y) = (x -+ 2),
Ay + 2
so that x' belongs to M.

Therefore the assertion holds always.

Theorem 9: For given x and y, exactly one of the following
must be the case:

1} T == Y.

2) There exists a u (exactly one, by Theorem 8) such that

T oz Y -+ U
3) There exists ¢ v (exactly one, by Theorem 8) such that
Y= .

Proof: A} By Theorem 7, cases 1) and 2) are incompatible,
Similarly, 1) and 3) are incompatible. The incompatibility of 2)
and 3) also follows from Theorem 7 ; for otherwise, we would have

Tyt ue={g+v)+tu=z+{0+u)=_({{©-+u)+ez

Therefore we can have at most one of the cases 1), 2) and 3).
B) Let x be fixed, and let M be the set of all ¥ for which one
(hence by A}, exactly one) of the cases 1), 2) and 3) obtains.
I) For y=1, we have by Theorem 8 that either
& o ] = Y (case 1})
or
Hoom Y == 1 b U=+ ou (case 2)).
Hence 1 belongs to M.
IT) Let y beleng to M. Then
either (case 1) for y)
& o R,
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hence
YWoumy +lez +1 (case 3) for ¥');
or (case 2) for y)

Lo Y U, m 3
hence if
u=1, Ordering
then Definition 2: If
L=y + 1=y {case 1) for o) E=Y +
but if then
#==1, x>y
then, by Theorem 3, (> to be read “is greater than.”)
%o i’ == 1 4+, Definition 3: If
g=y + {1+ wy=(y+1)+tw=y+w Y=o + v
(case 2) for ¥'); then
or (case 3) for y) T < Y.
y==zx -+, . { < to be read “is less than.”)
hence Theorem 10: For any given x, ¥, we have exactly one of the
¥=(x+w) a=z-+v cases
(case 3) for #'}. T=%Y X>¥ Ty
In any case, ¥ belongs to M. Proof: Theorem 9, Definition 2 and Definition 3.
Therefore we always have one of the cases 1), 2) and 3). Theorem 1}: [If
r>y
then
y <X
Proof: Fach of these means that
- Ty ou
for some suitable u.
Theorem 12: If
x <Y
then
Y > T.
Proof: Each of these means that
y=—x + v
for some suifable v,
Definition 4: x =y

Means
T >Y or T==1.
{Z= to be read “is greater than or equal to.”}
Definition 5: r=Zy
means
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T <Y or T==1Y.
(= to be read “is less than or equal to.”)
Theorem 13: If

=Y
then
Y =R
Proof: Theorem 11.
Theorem: t4: If
T=Y
then
Y=

Proof: Theorem 12.
Theorem 15 (Transitivity of Ordering): If

LY ¥<z
then
& < 2.
Preliminary Remark: Thus if
T>Y Y>>z
then
>z,
since
Y, YL,
Z <

but in what follows I will not even bother to write down such
statements, which are obtained trivially by simply reading the
formulas backwards.

Proof: With suitable ¢, w, we have

Y=x+ v, z2=y-+ W,
hence
g (2 + VYt wWwe=x+ (v + w),
x < 2
Theorem 16: If
TEY, y<z oo Ty, W=z
then
T <z
Proof: Obvious if an equality sign holds in the hypothesis:
otherwise, Theorem 15 does it.
Theorem 17: If
EZY VEZR

§ 3. ORDERING 11
then
r =z
Proof: Obvious if two equality signs hold in the hypothesis;
otherwise, Theorem 16 does it,
A notation such as
e<bSce<d

is justified on the basis of Theorems 15 and 17. While its immedi-
ate meaning is

a<b b=e¢ e¢<d,
it also implies, according to these theorems, that, say
a<e a<d b<d
{Similarly in the later chapters.)
Theorem 18: x+y >,
Preof: 2t Y=+ ¥y
Theorem 19: [f
T>Y, O T=1, OF X < Y,
then
rhz>ytrorz =yt orziz<yt e,
respectively.
Proof: 1) If

then ey
= R
4z = (ytu)ts = Uty 4z = wt¥+2) = w+s)+u
T4z >y4 s
2y it
T o=y
then clearly
T+g = Y-+ &
3y If
& <
then y
Y =,
hence, by 1),
Y+ e=rtz,
42 <ly+ ez

Theorem 20: If
rte>y+trorrtrz=y+z orrtrsyt oz



12 I. Natural NUMBERS {Th. 21-27}

then T>Y or Ty, or ¥ <Y, respectively.

Proof: Follows from Theorem 19, since the three cases are, in
buth instances, mutually exclusive and exhaust all possibilities.

Theorem 21: [If

T>Y, 2>
then

x>yt u

Proof: By Theorem 19, we have

xt+z>y -tz

and
ytar=zty>ut+ty=y-tu

hence

r+z>y+u
Theorem 22: If
TZY, E>UOTE>Y, B2 U,
Ehen
2>y -+
Proof: Follows from Theorem 19 if an equality sign holds in
the hypothesis, otherwise from Theorem 21.
Theorem 23: [If

T Y 7

I

U,
then
T+z=y+u
Proof:  Obvigus if two equality signs hold in the hypothesis;
otherwise Theorem 22 does it.
Theorem 24: x=1.
Proof: Either

or
=W =u+1>1L
Yheorem 25: [If

¥y>x
then
y=x+ 1.
Proof: Y=z -+ U,
w =1,

hence

§3. ORDERING 13
y=zx+ 1.
Theorem 26: If
y<ax+1
then
Y=

Proof: Otherwise we would have

Yy>x
and therefore, by Theorem 25,

y=a -+ 1.

Theorem 27: In every nom-empty set of natural numbers
there is a least one (i.e. one which is less than any other number
of the set).

Proof: Let % be the given set, and let S be the set of all x
which are =< every number of 0.

By Theorem 24, the set 9 contains the number 1. Not every
z belongs to M; in fact, for each y of N the number y + 1 does
not belong to M, since

¥+1>

Therefore there is an m in ¢ such that m + 1 does not belong
to M ; for otherwise, every natural number would have to belong
to 92, by Axiom 5.

Of this m I now assert that it is =< every n of %, and that it belongs
to ®. The former we already know. The latter is established by an
indirect argument, as follows: If m did not belong to %, then for
each n of Nwe would have

m << n,
hence, by Theorem 25,
m+1=n;
thus m + 1 would belong to 9, contradicting the statement above
by which m was introduced.
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X1=X,
since

Theorem 114: If Z is the rational number corresponding to

the fraciion ,MJ then

Proof: M.WN{L?\E?«(].

Definition 27: The U of Theorem 110 is called the quotient of
X by Y, or the rational number obtained from division of X by Y.

It will be denoted by %. (to be read “X over Y").

Let X and Y be integers, say X = % and Y == y. Then by Theo-

rem 114, the rational number Mn determined by Definitions 26 and

27 stands for the class to which the fraction ;Ma {in the earlier
gense) belongs,
We need not be afraid of confusing the two symbols W_ since

fractions as such will from now on no longer oceur. sm will hence-~
forth always denote a rational number, Conversely, every rational

number may be expressed in the form z , by Theorem 114 and

y
Definition 27.

Theorem 115: Let X and Y be given. Then there exists a 2
such that

z2X > Y.
Proof: zMHM is a rational number; by Theorem 89, there exist
integers {in our new terminoclogy), say z and v, such that
LA 4
v X

By Theorem 111, we have
v=1

hence, by Theorem 105,

#X = Xo = wﬂ__v - Awmvewﬁxwv.w _xi-x¥-vx

Def, 27-261 § 1. DEFINITION 43

CHAPTER 1l
€UTs
81

Definition

Definition 28: A set of rational numbers is called a cui if

1) it conteins o rational number, but does not contain all
rationgl numbers;

2} every rational number of the set i gmaller than every
rational number not belonging to the set;

3) it does not contain a greatest rational number (ie. a number
which ig greater than any other number of the set).

We will also use the term “lower class” for such a set, and the
term “upper class” for the set of all rational numbers which are
not contained in the lower class. The elements of the two sets will
then be called “lower numbers’ and “upper numbers,” respectively.

Small Greek letters will be used throughout to denote cuts, except
where otherwise specified.

Definition 29: § = g

(== to be read “is equal to”’} if every lower number for £ i a lower
number for n and every lower number for n is a lower number
for &,

In other words, if the sets are identical.

Otherwise,

]

{= to be read “is not equal to”).

The following three theorems are trivial:

Theorem 116: E =
Theorem 117: If Ee=1
then
7 == &.
Theorem 118: If E=mn, n=1,
then
E==1{(.



