From W. Rudin, Principles of Mathematical Analysis

TAYLOR'S THEOREM

5.15. Theorem. Suppose f is a real function on $[a, b], n$ is a positive integer, $f^{(n-1)}$ is continuous on $[a, b], f^{(n)}(t)$ exists for every $t \varepsilon(a, b)$. Let
$\alpha_{t} \beta$ be distinct points of $[a, b]$, and define

$$
\begin{equation*}
P(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k} \tag{23}
\end{equation*}
$$

Then there exists a point x between α and β such that

$$
\begin{equation*}
f(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^{n} \tag{24}
\end{equation*}
$$

For $n=1$, this is just the mean value theorem. In general, the theorem shows that f can be approximated by a polynomial of degree $n-1$; and (24) allows us to estimate the error, if we know bounds on $\left|f^{(n)}(x)\right|$.

Proof: Let M be the number defined by

$$
\begin{equation*}
f(\beta)=P(\beta)+M(\beta-\alpha)^{n} \tag{25}
\end{equation*}
$$

and put

$$
\begin{equation*}
g(t)=f(t)-P(t)-M(t-\alpha)^{n} \quad(a \leq t \leq b) \tag{26}
\end{equation*}
$$

We have to show that $n!M=f^{(n)}(x)$ for some x between α and β. By (23) and (26),

$$
\begin{equation*}
g^{(n)}(t)=f^{(n)}(t)-n!M \quad(a<t<b) \tag{27}
\end{equation*}
$$

Hence the proof will be complete if we can show that $g^{(n)}(x)=0$ for some x between α and β.

Since $P^{(k)}(\alpha)=f^{(k)}(\alpha)$ for $k=0, \ldots, n-1$, we have

$$
\begin{equation*}
g(\alpha)=g^{\prime}(\alpha)=\cdots=g^{(n-1)}(\alpha)=0 \tag{28}
\end{equation*}
$$

Our choice of M shows that $g(\beta)=0$, so that $g^{\prime}\left(x_{1}\right)=0$ for some x_{1} between α and β, by the mean value theorem. Since $g^{\prime}(\alpha)=0$, we conclude similarly that $g^{\prime \prime}\left(x_{2}\right)=0$ for some x_{2} between α and x_{1}. After n steps we arrive at the conclusion that $g^{(n)}\left(x_{n}\right)=0$ for some x_{n} between α and x_{n-1}, that is, between α and β.

