TAYLOR'S THEOREM

5.15. Theorem. Suppose f is a real function on [a,b], n is a positive integer, $f^{(n-1)}$ is continuous on [a,b], $f^{(n)}(t)$ exists for every $t \in (a,b)$. Let

 α, β be distinct points of [a,b], and define

(23)
$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

Then there exists a point x between α and β such that

(24)
$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

For n = 1, this is just the mean value theorem. In general, the theorem shows that f can be approximated by a polynomial of degree n - 1; and (24) allows us to estimate the error, if we know bounds on $|f^{(n)}(x)|$.

Proof: Let M be the number defined by

(25)
$$f(\beta) = P(\beta) + M(\beta - \alpha)^n$$

and put

(26)
$$g(t) = f(t) - P(t) - M(t - \alpha)^n \quad (a < t < b).$$

We have to show that $n!M = f^{(n)}(x)$ for some x between α and β . By (23) and (26),

(27)
$$g^{(n)}(t) = f^{(n)}(t) - n!M \qquad (a < t < b).$$

Hence the proof will be complete if we can show that $g^{(n)}(x) = 0$ for some x between α and β .

Since $P^{(k)}(\alpha) = f^{(k)}(\alpha)$ for $k = 0, \ldots, n-1$, we have

(28)
$$g(\alpha) = g'(\alpha) = \cdots = g^{(n-1)}(\alpha) = 0.$$

Our choice of M shows that $g(\beta) = 0$, so that $g'(x_1) = 0$ for some x_1 between α and β , by the mean value theorem. Since $g'(\alpha) = 0$, we conclude similarly that $g''(x_2) = 0$ for some x_2 between α and x_1 . After n steps we arrive at the conclusion that $g^{(n)}(x_n) = 0$ for some x_n between α and x_{n-1} , that is, between α and β .