April	14.	2007.
7 T [/] T T	T Z,	4001

Math 121A

Name	

Instructor:

Lab Section time

Midterm #3 THEORETICAL EXAM

PRACTICE VERSION of the index card and simple scientific calculators only portion.

- 1. (30 pts) Consider $f(x) = x^3 12x^2 + 45x 50$.
 - Find all critical points (x_c, y_c) of f.

$$(3,4)$$
 and $(5,0)$

- Find all inflection points (x_{ip}, y_{ip}) of f.
- Consider f limited to the domain $x \in [0,8]$. Find the interval of x values for which the function f is increasing in this interval. [0,8] and [5,8]
- Consider f limited to the domain $x \in [0, 8]$. Find the interval of x values for which the defivative of the function f is increasing (the function f is concave up) in this interval.

- On the graph of the function above, label all critical points.
- On the graph of the function above, label all points of inflection.

3. (30 pts) Find the derivatives of the functions below:

•
$$f(x) = x^3 - 12x^2 + 45x - 50$$
.
 $f'(x) = 3 \times^2 - 24 \times + 45$

•
$$f(x) = 3x^{-2} + 5\sqrt{x} + 7$$
.
 $f'(x) = -6$ 3 + $\frac{2.5}{\sqrt{x}}$

•
$$f(x) = 8 \exp(-2x) + 3 \ln(4x)$$

 $f'(x) = -16 e^{-2x} + \frac{3}{x}$

•
$$f(x) = \frac{2}{x^3} + \exp(5x) - 7\ln(\sqrt{6x}) + 9$$

 $f'(x) = -6x + 5e^{5x} - \frac{7}{2x}$

4. (20 pts) Find the slope of the secant line between the point $(3, f(3)) = (3, \mathbb{X})$ and the points (3+h, f(3+h)) on the graph of $f(x) = x^3 - 12x^2 + 45x - 50$ for h = 2 and h = 1. Also find

$$\lim_{h\to 0}\frac{f(3+h)-f(3)}{h}$$

$$h=2: \frac{f(5)-f(3)}{2} = -2$$

$$h=1: \frac{f(4)-f(3)}{1}=-2$$

$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = 0$$